
Test automation guide
An introduction to test automation from a business viewpoint



Why?

This guide will help you understand the
fundamentals of test automation and to find
out different aspects of automation that you
should consider before investing in it.



What is test automation?

Pros and cons of test
automation

Is test automation suitable

for you?

What to consider before

implementation

Conclusions

Things to consider when
choosing the tools

Our suggestions for various

environments

What happens after the

implementation

Content

1.

2.

3.

4.

5.

6.

7.

8.



What is
test automation?

Test automation (TA) is the process of
using dedicated tools to create means of
executing test scenarios using computers
and without human intervention in the
execution phase.

The most important thing about test automation is the

fact that it is basically a tool. Test automation is not a

testing strategy, it doesn't know about planning, test

coverage and so on.

Usually, the test automation process should generate a

custom test automation framework using various tools

(libraries, low level test automation frameworks), that is

customized for the application under test.

1.



Common
requirements for
a TA solution

Simple enough way of writing and automating

new test cases

Good logging mechanism so that automated test

run results are easy to understand/debug

Results reporting to external systems (eg.Jira,

TestRail)

Code base should be easy to extend, maintain

and customize

Unattended execution of test scenarios -

continuous integration

Capability to run on different OS (Windows,

Linux, Mac & mobile platforms) Email

notifications



Many approaches
Test automation can be

executed in different layers

API testing

Unit testing

GUI testing



"Recording tools"

One special approach to GUI test automation is the usage

of tools that are able to record human actions and

generate code to re-play those actions. Recorded scripts

approach is sometimes selected without good

understanding of the risks and disadvantages.

Compared to a proper test automation framework, this

approach has the following pros and cons.

Benefits:
Fast and easy to implement scripts

Allows inexperienced test engineers to create scripts

Challenges:

Recording tool might generate more steps than needed

Identification of GUI objects might be suboptimal

Coding is anyways needed in some cases (for loops)

On mid –long-term challenging to maintain the code

More or less mechanical actions –no real

understanding

of how the software works

Slightest GUI change will most likely break all the

scripts

that interact with that part of the GUI



Pros and cons of a TA solution

PROS CONS

Reliable

Fast

Precise

Never forgets

Increases test coverage

Saves money in the long run

Complex, lengthy test cases can be executed
unattended -> more time for test engineers to

Focus on other things -> happier test engineers

Longer initial development time

Requires additional tools

Analysis of a failed test case

Actual automated tests are production code

Requires specific skills from testers

2.

Fragility of test methods (especially GUI

automation)

Benefits show in the mid to long term

Legacy code might not have been

developed with automation in mind



Is TA suitable
for you?

In most cases, if a company develops software, then

test automation is used. This doesn't mean that

everything should or can be automated.

In certain cases, manual testing is a better approach

than test automation. Examples of these situations

on the next page.

3.



When manual
testing

When features are still under

development (functionality changes a lot).

When features are too complex and

automation effort would be too high.

When human validation is needed (look

and feel of the GUI).



What kind of test automation?
Another challenge is choosing what kind of test automation
should be implemented. As mentioned before, test
automation can be executed in different layers (Unit, API, GUI).

GUI

API

Unit

Each layer has its own purpose and they are not
mutually exclusive. In some cases a good decision is
to automate all of these layers and in other cases
some layers can be skipped.

Once it is decided which layer(s) to automate,
choosing the tools for doing this is also critical.
Selecting the right tools can make the difference
between a successful effort and failure.



What to
consider before
implementation

Test automation is a tool. A powerful tool if

used correctly.

Still, if used in a wrong manner it can do more

damage than good.

However the odds are it will help you. Read

more in the following pages.

4.



TA requires time and money –
when is it worth it?

While TA offers significant advantages in the long run, it's important to

acknowledge the initial costs and slower start:

Development Time: Building automated tests takes time, especially upfront.

Cost: The initial investment in tools and expertise can be substantial.

Return on Investment: The benefits of automation (reduced testing time,

increased accuracy, cost savings) become evident over multiple regression

cycles.

That’s why strategic planning is important:

Prioritize: Focus on automating high-value test cases that will be repeated

frequently.

Don't Automate Everything: Manual testing remains essential for certain

scenarios.

By carefully planning your test automation strategy and understanding the

initial investment required, you can maximize its long-term benefits.



Good candidates for automation can be tests that: 

Take along time to execute

Have lots of data validation

Are executed in each regression cycle

Are boring/difficult to be executed manually

Also, in some cases, test automation is the only way e.g:

non- functional testing for example -stability

performance

benchmarking

stress testing

TA requires time and money –
when is it worth it?



TA is software development –
you need skilled people

Don't fall for the hype of "no-code" solutions. Effective test automation is

closer to development than testing. You need skilled engineers with the

expertise to write and maintain quality code for your test cases and framework.

Avoid vendors promising effortless automation without coding. True test

automation demands technical skills and a solid understanding of software

development principles.

Investing in skilled engineers and choosing the right tools will set your test

automation efforts up for success.



There are good frameworks available now that allow better differentiation

between developers and test engineers - this way test automation tasks can be

better divided to suite everyone's skills. Engineers that have more development

skills can focus on developing the framework and the engineers that have more

product knowledge and testing skills can use the framework & tools created by

their colleagues to automate the manual test cases.

TA sometimes requires support from the teams that are developing the

software under test. Some applications might not have been built with test

automation in mind. In these cases small changes in the application to

facilitate easier automation can help. For example, in GUI testing ensuring that

there are unique identificators for certain GUI elements will help test

automation efforts significantly.

TA is software development –
you need skilled people



Things to consider
when choosing the
tools

Budget: 
This can already make certain tools unavailable due to

their licensing costs.

Research: 
Do research on each possible candidate and gather

information (internet is good enough) - make sure that

the persons in charge of making the decision actually

understand the needs and the challenges involved.

Skills of the team: 
This can suggest whether to go for open source or a

commercial product. Or the team can be expanded with

right people that could handle the challenges of using

open-source solutions.

Testing: 
Use proper Proof Of Concepts rather than just trust &

pick without evaluating.

5.



Most of the tools support various

programming languages

Tools like Selenium, Playwright and

Appium are quite mature

Required skills from the team

No support -you are on your own

Not so many built-in features available out of the box

Extra costs for maintenance -most likely

will be less than paying for licences

Relies heavily on developer support (can also be

a good thing)

Fixing of bugs & changing the open-

source solution might be needed

Pros and cons of open
source tools

PROS CONS

Flexible -with enough skills you are in control and
can implement whatever features needed whenever

Some solutions are widely used and

communities & support is really good

No extra costs for licensing

Access to source code



Implementation of missing features is

done by the provider of the solution

Not that flexible -some solutions offer only

support for single programming language

Might not be well suited for future test

automation needs

Pros and cons of
commercial tools

PROS CONS

Technical support

May offer a head start and maybe faster
progress in thebeginning of the project

Built in features that usually help

Might be easier to use

Might allow non-technical people to automate
simple scenarios easily (might not be good thing)

Extra costs from licensing

No access to source code



Robot Framework 
Generic keyword driven framework. Easily extensible andcan be integrated in most of the

projects.

Cypress
Frontend test automation tool for regression testing of web applications.

Selenium & Playwright
Widely used open-source tools for webtesting.

Appium
Formobile test automation. Can help test case reusage between iOS and Android. Might be

slower than dedicated tools. Wellsuited for blackboxtesting of mobile applications.

Espresso
Dedicated tool for Android test automation. Well suited for white-box testing (access to source

code of the application is needed). Faster than Appium, closer to development than testing.

XCTest
Same as Espresso, but for iOS.

OpenCV
Open-source library useful for test automation efforts where image recognition is needed.

Tool suggestions for
various environments6.



What happens after the
implementation?7.

Define processes on how to do test automation:

Which manual test cases should be automated and when
How test automation should be used in regression cycles

Focus on company-wide adoption of test automation and train new people to

use the test automation tools and framework.

Build automated regression cycles using the tests that have been automated.

Implement automated reporting & KPIs extraction etc. for better regression

results visibility and progress monitoring by management.

Add new functionalities for the framework.

Add new test cases for new features.

Maintain existing codebase.

Build continuous integration pipelines that run automated tests against new

versions of the software so that bugs are found fast.

*Not all options above might be suited for all projects



Test Automation is a tool that can produce significant benefits, when used correctly.

Like computers in general, TA is reliable, fast and precise. With these qualities it can save money

and improve the quality of testing, as long as you are patient.

Cons of TA include the costs of the initial implementation and the need for skilled technical

experts.

Not everything should be automated. There are many things that should be tested by humans in

the future too.

Good candidates for automation are tests that: are repeated often, take a lot of time or are

difficult or boring for humans. Also, some things can not be tested without automation (like

performance testing).

Proper tools are essential in a successful test automation. Be patient and take your time when

selecting the tools.

Open-source tools can be more flexible and enabling than commercial tools. On the other hand,

open-source tools require more skilled experts.

Conclusions8.



www.valagroup.com

Thank

you!
Contact us if you want

to know more.

Text content: Dragos Guberna

Layout: Toni Roschier

+358 50 542 4324

Juho Häyrynen, Head of Sales

juho.hayrynen@valagroup.com


